Developing Natural Product-based Polymers for Medical Applications

http://www.fraunhofer.de/en/.html

Tiffany P. Gustafson, PhD

Texas A&M University Department of Chemistry

Common Hydrolytically-degradable Polymers Prepared by Ring Opening Polymerization (ROP)

CHEM 466 - Polymer Chemistry, April 17, 2014

Natural Product Polymers with the Functionality of Synthetic Polymers

Natural products with "built in" diol for cyclic carbonate formation

Shen, Y.; Chen, X.; Gross, R. A. *Macromolecules* **1999**, *32*, 2799-2802

Haba, O.; Tomizuka, H.; Endo, T. *Macromolecules* **2005**, *38*, 3562-3563 Azechi, M.; Matsumoto, K.; Endo, T. *J. Polym. Sci., Part A: Polym. Chem.* **2013**, *7*, 1651-1655

OR protect to change properties/functionality

Organobase Catalyzed Ring Opening Polymerization (ROP) Initiator/Chain-End Activation

CHEM 466 - Polymer Chemistry, April 17, 2014

<mark>⊢–Н</mark> n+1

Degradable Polymers Derived from Natural Products: Organocatalyzed ROP of glucose-based cyclic carbonate

Mikami, K.; Lonnecker, A. T.; Gustafson, T. P.; Zinnel, N. F.; Pai, P.; Russell, D. H.; Wooley, K. L. J. Am. Chem. Soc. 2013, 135, 6826-6829

Degradable Polymers Derived from Natural Products: Organocatalyzed ROP of glucose-based cyclic carbonate

Controlled ROP Gives PGC with Regiorandom Propagation

Regiorandom propagation was confirmed by ESI tandem

MS analysis by electron transfer dissociation (ETD) ^{13}C NMR (CD₂Cl₂, 125 MHz) MeO. .O<u>,</u> "OMe .0. ″ОМе MeO' O) ŌMe ŌMe ·H 50 Tail : Tail MeO[•] MeO. MeÒ ҉ОМе MeO. "OMe n **"OMe O**. PGC MeO MeO ′ОМе Regiorandom ŌМе ŌMe ŌMe ″ОМе U, ŌMe Head : Tail Head : Head g 2 6 155.0 154.4 10 ppm 155 150 145 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 140

Degradable Polymers Derived from Natural Products for Nanomedicine

Gustafson, T.P.; Lonnecker, A. T.; Heo, G. S.; Zhang, S.; Dove, A. P.; Wooley, K. L. Biomacromolecules, 2013, 14, 3346–3353

Macroinitiation of Glucose Monomer Generates PPE-*b*-PDGC Block Copolymer

Supramolecular Self-assembly: Potential temperature sensitive phase behavior?

LCST

 Functional PPE₄₂-b-PDGC₃₆ precipitates from aqueous solution upon warming from 4 °C to room temp

Improving Materials and Degradation Characteristics

From Polymer Design to Applications: Degradable polymers with potential for use in medical applications

Implantable Devices

Therapeutics

- Nanomaterials for Drug Deliver
- Diagnostics and Imaging
 - Improving diagnostics contrast agents
 - Following and characterizing nanotherapeutics in vitro and in vivo

OsteoFab Patient Specific Cranial Device Oxford Performace Materials (PEKK)

Absorb Bioresorbable Vascular Scaffold System

Shell Crosslinked Knedel-like (SCK) Nanoparticles for Improved Therapeutics Delivery

Advantages of Nanotherapeutics for Drug Delivery and Imaging

Polymeric Nanoparticles for Treatment of Lung Metastasis of Osteosarcoma

Osteosarcoma:

- Peak incidence in adolescence (<5 to ~40 years)
- Most commonly in the *distal femur* or the *proximal tibia*
- High fatality rate
 - 70% survival at 5 years
 - < 30% with metastasis
- Most common site of metastasis is the lung
 - 40% present with overt metastasis
 - 90% estimated to have micrometastatic disease at diagnosis

Treatment:

- Combination chemotherapy and surgical removal of the tumor (primary tumor)
- Chemotherapy to eliminate micrometastatic disease
- Unresectible recurrent disease is uniformly fatal

"...drugs delivered to the respiratory tract in liposomal formulation resulted in high pulmonary drug concentration, reduced systemic toxicity, and reduced dosage requirements compared with parenteral and oral administration."

Koshkina, N. V.; Kleinerman, E. S.; Waldrep, C.; Jia, S.-F.; Worth, L. L.; Gilbert, B. D.; Knight, V. Clin. Cancer Res. 2000, 6, 2876-2880

Fluorescent Labels: Why are they needed and what are we observing?

S₁ (Excited Singlet State)

- Light absorption (excitation) Photon absorption
- **Relaxation & internal conversion**
- Non-radiative decay No observed emission
- Radiative decay (emission) Photon emission observed

S₀ (Ground State)

Fluorescent Labeling of Degradable Polymeric Materials

Lim, Y. H.; Heo, G. S.; Cho, S.; Wooley, K. L. ACS Macro Lett. 2013, 2, 785-789

Gustafson, T. P.; Lim, Y. H.; Flores, J. A.; Heo, G. S.; Zhang, F.; Zhang, S.; Samarajeewa, S.; Raymond, J. E.; Wooley, K. L. Langmuir 2014, 30, 631-641

Electrophoretic Analysis (SDS-PAGE): Effects of polymer degradation when characterizing fluorophore conjugation

www.

Band profiles due to electrophoresis Triggered degradation Band profile due to polydispersity

Samarajeewa, S.; Ibricevic, A.; Gunsten, S. P.; Shrestha, R.; Elsabahy, M.; Brody, S. L.; Wooley, K. L. Biomacromolecules 2013, 14, 1018-1027

UV/Vis Absorption Suffers from Scattering, Limiting Utility for Quantitative Assessment

Steady State Spectroscopy for Assessing Dye-cSCK Conjugation

Emission Anisotropy, r

- **Tumbling** or state change & size determination is provided thru Polarized ex./em.
- Provide information on dynamic behavior: molecular orientation & rotational diffusion
- Measure the avg. angular displacement during the time between excitation and emission.

$$r = r_0 \frac{\theta}{\theta + \tau}$$
 Rotational correlation time
 $\theta = \frac{\eta V}{RT}$

0.4 = high anisotropy 0.0 = low anisotropy

 $r \uparrow = \text{Slower } \theta$ $r \downarrow = \text{Faster } \theta$

Steady State Spectroscopy: Some methods offer more reliability than others

Steady State Anisotropy

 $r = r_0 \frac{\theta}{\theta + \tau} \leftarrow \text{Rotational correlation time}$ $r = r_0 \frac{\theta}{\theta + \tau} \leftarrow \text{Lifetime} \qquad \theta = \frac{\eta V}{RT}$

 $r \uparrow = \text{Slower } \theta$ $r \downarrow = \text{Faster } \theta$

It's not only about confirming conjugation: How to obtain information on environmental interactions?

Solvent	Sample Type	Sample	r
Nanopure H ₂ O	Dye	A488	0.015 ± 0.003
	Degradable	A488 cPPE	0.114 ± 0.004
	Non-degradable	A488 PAEA	0.129 ± 0.006
PBS pH 7.4	Dye	A488	0.013 ± 0.002
	Degradable	A488 cPPE	0.089 ± 0.002
	Non-degradable	A488 PAEA	0.132 ± 0.008
5% FBS in H ₂ O	Dye	A488	0.259 ± 0.006
	Degradable	A488 cPPE	0.185 ± 0.005
	Non-degradable	A488 PAEA	0.217 ± 0.012

 $r = steady state anisotropy \lambda_{ex} = 430 \text{ nm}, \lambda_{em} = 580 \text{ nm}$

Time Domain Spectroscopy for Assessing Dye-cSCK Conjugation

Excited State Lifetime

Radiative processes:

- a) Intrinsic building blocks (dye)
- b) Macromolecular (dye-polymer or dye-protein conjugates)
- c) Supramolecular (dye-nanoparticle conjugates)

Non-radiative processes (environmental interactions):

- 1) Solvent
- 2) Collisions
- 3) Aggregation

time

Shell Chemistry/Ionic Character is Accountable for Divergence in Decay Profiles/Lifetimes

Fluorescence lifetime in water:

- 2) Shell Rigidity: PAEA-*b*-PLA $T_q = 48 \degree C vs. cPPE-b-PLLA T_q = -7.49 \degree C$
- 3) Different shell character:
 - 1) Average intrinsic dipole moment
 - 2) Ammonium density
 - 3) Charge density

Steady state anisotropy trends rule out size and rigidity

~141 nm

~29 nm

Fluorescence Lifetime Changes Indicates Increased Polymer-solvent Interactions for Degradable cPPE

biology become a factors

Polymer-based Nanotherapeutics

Intelligent synthetic design offers unique opportunities to improve upon traditional synthetic materials; natural product-based materials may offer increased biocompatibility, control of degradation products, *etc*.

Importance of evaluating polymeric nanomaterials as therapeutics and imaging agents:

What is the goal? How to evaluate polymeric materials to ensure they work in a consistent and reproducible manner

How can polymer/nanoparticle design impact observations during *in vivo* studies?

Acknowledgments

Prof. Karen L. Wooley Dr. Amandine Noel Dr. Jeffery E. Raymond Fuwu Zhang Stephanie Pollack Lauren Link Young Lim Jeniree Flores Richen Li Alexander T. Lonnecker Adriana Pavia-Sanders

Collaborators:

National Science Foundation (CHE-1057441)

National Heart Lung and Blood Institute, Program of Excellence in Nanotechnology (HHSN268201000046C)

W. T. Doherty-Welch Chair in Chemistry

Prof. David Russell Dr. Fred Zinnel

Texas A&M Institute for Preclinical Studies TEXAS A&M UNIVERSITY

Dr. Mark Lenox Rachel Johnson

THE UNIVERSITY OF TEXAS
MDAndersonDr. Dennis HughesCancer CenterDr. Laura NelsonMaking Cancer History*Tiffany Lynch
Dr. Yanwen Yang

